The Generalized Janowski Starlike and Close-to-Starlike Log-Harmonic Mappings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Generalized Janowski Starlike and Close-to-Starlike Log-Harmonic Mappings

Motivated by the success of the Janowski starlike function, we consider here closely related functions for log-harmonic mappings of the form f z zh z g z defined on the open unit disc U. The functions are in the class of the generalized Janowski starlike log-harmonic mapping, Slh A,B, α , with the functional zh z in the class of the generalized Janowski starlike functions, S∗ A,B, α . By means ...

متن کامل

Harmonic Mappings Related to Starlike Function of Complex Order Α

Let SH be the class of harmonic mappings defined by SH = { f = h(z) + g(z) | h(z) = z + ∞ ∑ n=2 anz , g(z) = ∞ ∑

متن کامل

Parabolic starlike mappings of the unit ball $B^n$

Let $f$ be a locally univalent function on the unit disk $U$. We consider the normalized extensions of $f$ to the Euclidean unit ball $B^nsubseteqmathbb{C}^n$ given by $$Phi_{n,gamma}(f)(z)=left(f(z_1),(f'(z_1))^gammahat{z}right),$$  where $gammain[0,1/2]$, $z=(z_1,hat{z})in B^n$ and $$Psi_{n,beta}(f)(z)=left(f(z_1),(frac{f(z_1)}{z_1})^betahat{z}right),$$ in which $betain[0,1]$, $f(z_1)neq 0$ a...

متن کامل

Harmonic Close-to-convex Mappings

Sufficient coefficient conditions for complex functions to be close-to-convex harmonic or convex harmonic are given. Construction of close-to-convex harmonic functions is also studied by looking at transforms of convex analytic functions. Finally, a convolution property for harmonic functions is discussed. Harmonic, Convex, Close-to-Convex, Univalent.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2011

ISSN: 0161-1712,1687-0425

DOI: 10.1155/2011/356915